Use of the Weighted Histogram Analysis Method for the Analysis of Simulated and Parallel Tempering Simulations.

نویسندگان

  • John D Chodera
  • William C Swope
  • Jed W Pitera
  • Chaok Seok
  • Ken A Dill
چکیده

The growing adoption of generalized-ensemble algorithms for biomolecular simulation has resulted in a resurgence in the use of the weighted histogram analysis method (WHAM) to make use of all data generated by these simulations. Unfortunately, the original presentation of WHAM by Kumar et al. is not directly applicable to data generated by these methods. WHAM was originally formulated to combine data from independent samplings of the canonical ensemble, whereas many generalized-ensemble algorithms sample from mixtures of canonical ensembles at different temperatures. Sorting configurations generated from a parallel tempering simulation by temperature obscures the temporal correlation in the data and results in an improper treatment of the statistical uncertainties used in constructing the estimate of the density of states. Here we present variants of WHAM, STWHAM and PTWHAM, derived with the same set of assumptions, that can be directly applied to several generalized ensemble algorithms, including simulated tempering, parallel tempering (better known as replica-exchange among temperatures), and replica-exchange simulated tempering. We present methods that explicitly capture the considerable temporal correlation in sequentially generated configurations using autocorrelation analysis. This allows estimation of the statistical uncertainty in WHAM estimates of expectations for the canonical ensemble. We test the method with a one-dimensional model system and then apply it to the estimation of potentials of mean force from parallel tempering simulations of the alanine dipeptide in both implicit and explicit solvent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of normalizing constants for simulated tempering

In this paper, we propose to estimate the normalizing constants for simulated tempering by a modified histogram algorithm, the so-called contour Monte Carlo algorithm, and compare the efficiency of simulated tempering and parallel tempering. Our analysis reveals that simulated tempering tends to mix faster than parallel tempering at low temperature levels for simulating from complex systems. Th...

متن کامل

Feedback-optimized parallel tempering Monte Carlo

We introduce an algorithm for systematically improving the efficiency of parallel tempering Monte Carlo simulations by optimizing the simulated temperature set. Our approach is closely related to a recently introduced adaptive algorithm that optimizes the simulated statistical ensemble in generalized broad-histogram Monte Carlo simulations. Conventionally, a temperature set is chosen in such a ...

متن کامل

Locally weighted histogram analysis and stochastic solution for large-scale multi-state free energy estimation.

The weighted histogram analysis method (WHAM) including its binless extension has been developed independently in several different contexts, and widely used in chemistry, physics, and statistics, for computing free energies and expectations from multiple ensembles. However, this method, while statistically efficient, is computationally costly or even infeasible when a large number, hundreds or...

متن کامل

xTRAM: Estimating Equilibrium Expectations from Time-Correlated Simulation Data at Multiple Thermodynamic States

Computing the equilibrium properties of complex systems, such as free energy differences, is often hampered by rare events in the dynamics. Enhanced sampling methods may be used in order to speed up sampling by, for example, using high temperatures, as in parallel tempering, or simulating with a biasing potential such as in the case of umbrella sampling. The equilibrium properties of the thermo...

متن کامل

Generalized-Ensemble Algorithms for Protein Folding Simulations

Conventional simulations of complex systems in the canonical ensemble suffer from the quasi-ergodicity problem. A simulation in generalized ensemble overcomes this difficulty by performing a random walk in potential energy space and other parameter space. From only one simulation run, one can obtain canonical-ensemble averages of physical quantities as functions of temperature by the single-his...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 2007